Welcome

Welcome to the Josty Mini Blog where we will provide summary posts from our main blog on www.josty.nz, all of the information with a fraction of the reading.

If this makes you think or inspires you then that's great then follow this blog. If you want to reach out, then head over to our contact page via the links on the right.

Monday, December 8, 2025

Beyond the Post: Access Zyntec Energy's Field-Proven Critical Power Expertise

Boardroom with Zyntec Energy Branding


Recently, we’ve been sharing technical content through both my own and Zyntec Energy’s LinkedIn posts. The feedback’s been great, but I know from experience that for engineers and technical teams, short posts only go so far.

So, we’ve taken things a step further and started publishing full-length technical articles directly on the Zyntec Energy LinkedIn page.

These long-form articles expand on our technical posts and get right into the detail, the things that actually matter when you’re designing, installing, maintaining or upgrading critical power systems.

So far, we’ve published deep dives on:
• Best Practices for UPS and DC System Battery Installation
• Modbus Visibility for Backup Power and Customised DC Systems
• Designing Power Systems for Peak Load and Future Growth
• Remote Site System Design for Reliability and Uptime 
• Load Shedding Strategies for Critical DC Power System
• Why Surge Protection Is Essential Today
• Predictive Maintenance for Critical DC Power Systems

These aren’t theory pieces, they’re built from real-world experience, real projects, and real problems we see across backup power, DC systems and critical infrastructure.

We’ll be adding to this regularly as part of Zyntec Energy’s commitment to sharing practical, field-proven knowledge with the industry.

If you’re an engineer, technician, operator or decision-maker working with critical power systems, I’d encourage you to:
✅ Follow the Zyntec Energy LinkedIn page
✅ Read the articles
Reach out if you want to discuss an upcoming project or challenge

Let’s keep raising the bar for technical standards and system reliability across our industry.

17 Years of Growth, Grit & Impact in Power Systems

Working on a mast of ship during a storm and working in an office

Seventeen years ago, I made a decision that completely reshaped the trajectory of my life and career. I stepped off the tools and into the world of sales engineering, partly chasing the idea of more stable hours and a bit more time at home, but mostly looking for a role where I wasn’t putting myself in harm’s way multiple times a week. What I didn’t realise then was just how defining that decision would be.


I had no idea of the impact I’d eventually have, not just on infrastructure and critical systems here in New Zealand, but in places far beyond our borders. Over the years I’ve had the privilege of contributing to major projects across Australia, Bangladesh, Scotland, Kenya, the Pacific Islands, and more. It’s humbling to know that something you’ve designed, influenced, or helped bring to life is now quietly doing its job every single day, keeping communities connected, safe, and running.

Of course, the road didn’t start smoothly. My very first custom solution design and quote? A complete failure. And at the time it hit hard. But that failure lit a fire in me, a determination to understand the industry inside out, to master the craft, and to become someone customers, engineers, and teams could rely on. That moment set the standard for everything that followed.

Since then, I’ve spent my career solving complex problems, building relationships, and shaping solutions that support almost every part of the New Zealand grid. I can look back now and say, with a sense of quiet pride, that there’s very little happening across the country’s critical power landscape that doesn’t have at least one, but usually several, of my solutions involved.

And through it all, I never moved away from the things that matter. Being part of the community, coaching youth sports, supporting local schools and clubs where those moments offered balance, perspective, and a reminder of why the work itself matters.

Seventeen years on, I’m grateful: for the challenges, the failures, the wins, and the chance to play a small part in shaping the future of power and infrastructure.

Designing Power Systems for Peak Load and Future Growth

 Festive town, church, full-load substation on sunny holiday

Peak Load Design and Capacity Planning for Reliable Power

Introduction

What do churches and substations have in common?
More than most people think.

Both are built for peak load events, those rare moments when demand reaches its maximum, even if that peak occurs only once a year. A church is designed for Christmas and Easter. A substation is designed for the highest possible load scenario that may come only in the middle of winter, when heating, industrial activity, and network stress converge at the worst possible moment.

And the exact same principle applies to your DC power systems, your backup power systems, and any form of critical infrastructure that carries the weight of continuous operation.

Across industries, utilities, transport, water and wastewater, telecommunications, data centres, manufacturing, and commercial infrastructure, the peak determines the performance standard. Not the average day, not the typical demand, and not the “it normally sits around this level” assumption that so often leads to under-designing.

In the world of power engineering, the harsh truth is simple: systems do not fail when things are calm. They fail at the peak. They fail when demand is highest, when stress is greatest, when the environment is least forgiving. And if they’re not designed for those moments, the cost of getting it wrong is far greater than the cost of designing it properly from the start.

This article digs into why peak load design, capacity planning, future growth planning, and reliability engineering matter so much and why building space for redundancy and future expansion is not a luxury, but a requirement. It also explores how the best engineering practice is not simply about installing bigger equipment; it’s about designing intelligently to reduce risk, improve reliability, and ensure that the system can continue to operate even under the worst-case conditions.

At Zyntec Energy, we often deal with the consequences of systems that were designed around average loads rather than peak loads. The goal here is to explain this in a way that engineers respect but everyone else understands too so the next time a business leader asks, “Why do we need all this capacity?” they’ll understand exactly why.


Why Peak Load Design Matters in Every Industry

1. Systems Fail at the Edges, Not in the Middle

Power systems are a lot like people: most of the time, they operate comfortably in the middle of their range without complaint. But as soon as you push them towards their limits, stress compounds, margins decrease, and the likelihood of failure skyrockets.

In a substation, the peak load might occur once or twice a year.
In a data centre, the peak might happen during a heatwave when cooling is under pressure.
In a water treatment plant, the peak may occur during storm events when pumps operate continuously.
In manufacturing, seasonal demand may push systems to their absolute maximum.
In transport, peak events might align with extreme weather or unexpected system loads.

Across all of them, the engineering truth remains the same: if you don’t design for the peak, you are designing for failure.

2. Average Load Is a Misleading Metric

Average load is useful for measuring typical operating conditions. It is not useful for measuring resilience.

A DC system designed for average load might appear efficient on paper, small in footprint, and cost-effective until the one day that the peak hits and the system simply cannot deliver the required power.

When that happens, the real costs quickly reveal themselves:

  • Outages

  • Site shutdowns

  • Loss of redundancy

  • Emergency repairs

  • Reputational damage

  • Safety incidents

  • Breached compliance conditions

What initially looked like a cost-saving measure becomes an expensive lesson.

This is why peak load design sits at the core of electrical design best practice. It protects the business from the unpredictable but inevitable moments when demand spikes.

3. Peak Load Design Is Standard Practice for Critical Infrastructure

In many industries, especially power transmission, distribution, and critical utility services, designing for peak load is standard practice because failure is not an option.

If a substation is not designed for peak load, it compromises the entire network around it. The same applies to DC systems embedded within critical infrastructure: rectifiers, chargers, batteries, distribution boards, protection systems, and backup systems all need to withstand the highest possible load condition.

Standard practice should always be:

Design the system so that it can supply the maximum load by itself, plus the additional load of redundant units, plus the expected future growth.

This ensures:

  • The system can handle peak demand.

  • Redundant (N+1 or N+2) units can be taken offline for maintenance.

  • The site remains operational under fault conditions.

  • Future equipment can be added without redesigning the whole system.

  • Risk is significantly reduced.

At Zyntec Energy, this design approach is the foundation of our engineering standards because it's the foundation of reliability itself.


Future Growth Planning: Why One Year’s Peak Isn’t the Real Peak

If peak load design protects you from today’s risks, future growth planning protects you from tomorrow’s.

The most common mistake organisations make is designing their DC or backup power systems exactly to their current load profile, nothing more, nothing less. On paper, this looks neat and efficient. In practice, it guarantees a costly expansion or full system replacement within a few years.

Why Loads Always Increase

Across all industries, loads tend to grow over time due to:

  • Additional equipment

  • Increased automation

  • More electronics per site

  • SCADA and communication upgrades

  • Electrification of previously manual processes

  • Stricter compliance requirements

  • Redundancy upgrades

In substations, for example, new feeders may be connected over time. In water and wastewater facilities, population growth can double throughput. In transport, timetable increases or electrification can significantly increase system demand.

A system designed only for today will not survive tomorrow.

Planning for Future Capacity Saves Money and Downtime

Designing for future growth is not about “oversizing.”
It is about avoiding expensive retrofits, where a system must be replaced or reconfigured because it cannot support new loads.

When planning DC and backup power systems, best practice includes:

  • Headroom for additional chargers

  • Additional battery capacity

  • Space in distribution boards

  • Physical space in racks

  • Cooling capacity for future heat loads

  • Spare I/O and monitoring points

  • Cable sizing suitable for foreseeable expansion

This reduces upgrade costs dramatically because the heavy lifting, the physical, electrical, and thermal design, is done once, not repeatedly.


Redundancy: The Difference Between Operating and Failing at Peak

Designing for peak load alone is not enough.
Redundancy ensures the system can still operate properly at peak when something goes wrong.

The standard approach is N+1 or N+2 redundancy:

  • N = number of power units required to meet the full peak load

  • +1 or +2 = number of additional units installed to handle failures or maintenance

Why this matters:

  • If one charger fails, the system keeps running at full capacity.

  • Maintenance can occur without outages.

  • Batteries remain properly charged even during faults.

  • Backup systems activate seamlessly.

  • Operators gain time to respond before the situation becomes unsafe.

Redundancy is not an option as it is a form of risk reduction, and it is a key part of reliability engineering.


Electrical Design Best Practice: Building for the Worst Case, Not the Best

Across every sector, designing for worst-case scenarios is one of the hallmarks of good engineering.

Electrical design best practice includes:

  • Designing for peak, not average

  • Including redundancy

  • Allowing for future growth

  • Considering temperature, environment, and fault conditions

  • Ensuring monitoring is robust

  • Providing physical space for expansion

  • Reducing single points of failure

  • Selecting equipment with appropriate ratings (not just adequate ratings)

These practices ensure the system works every day of its life, not just on paper.


Where Organisations Commonly Get This Wrong

Across industries, the same mistakes appear repeatedly:

  • Designing to today’s load profile

  • Forgetting about redundancy requirements

  • Assuming future upgrades will be “simple”

  • Treating DC systems as cost centres rather than risk-management assets

  • Lacking clear growth forecasting

  • Prioritising upfront cost instead of long-term value

At Zyntec Energy, we have seen sites spend significantly more over 10 years because the original design left no room for growth. A system that could have been future-proofed for 15–20% additional load often ends up being replaced entirely because its physical and electrical constraints make upgrades impractical.


The Ultimate Question: Why So Much Capacity?

This is the question leaders ask all the time, and for good reason because capacity costs money.

But the better question is:

What does it cost if the system fails at peak?

When viewed through the lens of reliability engineering and risk reduction, the cost of proper capacity planning is small, often just a fraction of the operational, safety, and reputational cost of failure.

You can operate at average load 364 days a year without incident.
But it’s the 365th day, the day everything is pushed to its limits, that determines whether your design was good enough.


Conclusion: Resilience Is Engineered, Not Assumed

Reliability doesn’t happen by chance.
It isn’t created by wishful thinking, optimistic assumptions, or designing for what normally happens.

It is built deliberately through peak load design, capacity planning, future growth planning, and reliability engineering grounded in real-world risk.

If your system can:

  • Handle its peak load,

  • Support its redundant units,

  • Provide space to grow,

  • And sustain operation under fault conditions,

then you haven’t just built a system, you’ve built resilience.

This is why electrical design best practice must always start at the peak, include redundancy, and look several years ahead. Whether you're designing a substation, a water plant, a digital infrastructure site, or any location using DC power systems, the principle remains universal.

Reliable systems are not those that work most of the time.
They are the systems that work every time they are needed most.


If you want to ensure your DC or backup power design is ready for peak load, future growth, and long-term reliability, I’m always happy to discuss it.

Reach out for a conversation or connect with the engineering team at Zyntec Energy to explore how strong design today prevents costly failures tomorrow.

Zyntec Energy Logo

Wednesday, December 3, 2025

Remote Site System Design for Reliability and Uptime

Remote communications site on a snowy mountain

Designing Remote Site Power and Monitoring Systems

Introduction

Designing reliable systems for remote sites has always required a different level of thinking. Whether it’s a telecom tower, water or wastewater pump station, LMR site, ITS cabinet, solar farm, remote substation, or an isolated communications site, the truth is the same: the more difficult a site is to reach, the more critical the engineering decisions become.

The challenges extend well beyond simple electrical sizing or communications configuration. Remote sites push the limits of environmental durability, monitoring visibility, accessibility, system redundancy, and real-world serviceability. Reflecting on past field experience, including a communications site in the middle of the city where travel time regularly exceeded the system’s one-hour battery backup, it becomes clear that traditional design assumptions frequently fall short.

This article explores the key considerations in designing remote site power and monitoring systems that deliver long-term reliability, reduced service time, and improved operational resilience. Throughout the discussion, you’ll see how practical lessons, and a few hard-learned ones, shape better system design. These insights also underpin the engineering philosophy applied at Zyntec Energy, where reliability, monitoring depth, and real-world practicality guide every system we deliver.


Environmental Factors: Designing for Reality, Not Ideal Conditions

Remote sites face environmental challenges that differ dramatically from controlled industrial rooms or general commercial installations.

Key environmental considerations include:

Heat Load and Temperature Extremes

High temperatures accelerate battery degradation and reduce charger lifespan. Cold temperatures slow chemical processes and impact battery runtime. Sites exposed to large daily swings or seasonal extremes need:

  • temperature-compensated charging

  • IP-rated enclosures

  • adequate ventilation and thermal design

  • battery technologies suited to climate (e.g., lithium vs VRLA)

Dust, Moisture, and Corrosion

Dust and moisture infiltrate equipment, causing premature failure. Coastal and industrial environments add corrosion risk. Appropriate sealing, cable management, material selection, and conformal coatings are essential.

UV Exposure and Weatherproof Construction

Outdoor cabinets must cope with UV degradation, wind loading, and severe weather. This affects both enclosures and cabling.

Poor environmental design is one of the most common root causes of premature system failure often showing up years later. Zyntec Energy’s approach focuses on selecting materials, enclosures, and charging technologies matched to the actual conditions, not just the datasheet assumptions.


Communication: The Lifeline of Remote Systems

Reliable communication is the backbone of remote system management. Without strong communication pathways, monitoring and control lose their value.

Technologies to Consider

  • LTE routers with failover paths

  • SNMP for network-based monitoring

  • Modbus for detailed DC system visibility

  • Remote I/O for environmental sensors and auxiliary equipment

  • Out-of-band management for critical systems

Reliable communication enables remote resets, diagnostics, and configuration updates. In practice, this is what prevents unnecessary truck rolls and enables informed response when faults occur.


Monitoring: The Difference Between Guessing and Knowing

A remote site can’t be reliable without deep, meaningful monitoring. Basic “DC fault” or “Battery fail” alarms aren’t enough.

Real Experience: LMR Mountain Site

At one mountain LMR site, only basic alarms were available. A fault notification came through, but without detailed information. Before travelling, there was no way to know whether the issue was the load, the DC system, or the charger.

The result?
The ute was loaded with:

  • a replacement charger

  • spare batteries

  • a spare transceiver

  • various associated components

When the team arrived, the fault turned out to be simply a charger failure.

This is a classic example of insufficient monitoring leading to:

  • wasted time

  • unnecessary equipment transport

  • increased manual handling risks

  • longer site downtime

Modern Monitoring Expectations

Remote sites should now provide:

  • battery health visibility

  • charger status, alarms, and charge current

  • voltage, current, temperature, and load data

  • environmental sensors (temperature, humidity, door open, smoke)

  • communication link health

  • reboot/reset functionality

  • historical event data

With proper monitoring, technicians go to site with exactly what they need or sometimes don’t need to go at all.

Zyntec Energy integrates Modbus, SNMP, LTE routers, and remote I/O into many designs to provide the level of detail required for confident remote diagnostics.


Backup Time: Matching Reality, Not Theory

Backup time is one of the most misunderstood components of remote system design.

Real Experience: City Comms Site

A communications site in the centre of the city had a one-hour backup time. On paper, that seemed acceptable. But in peak traffic, travel time to site regularly exceeded 90 minutes.

This meant:

  • the system would shut down before a technician even arrived

  • unplanned outages were almost guaranteed

  • restart times increased

  • operational risk remained perpetually high

Backup time should always consider:

  • real-world travel time

  • after-hours access constraints

  • site security protocols

  • weather

  • transport logistics

  • technician availability

The question isn’t “Is one hour enough according to the load calculation?”
The question is:
“How long until the first technician can realistically be on site?”

Zyntec Energy approaches backup sizing from an operational reality perspective, not a spreadsheet-driven one.


Technology Selection: Choosing What Works, Not What’s Convenient

Remote sites should use technologies selected for long-term reliability, maintainability, and operational visibility.

Key Technologies

  • Smart chargers capable of detailed reporting

  • Dual battery strings for redundancy

  • Lithium or advanced VRLA where weight or temperature is a factor

  • IP-rated enclosures for harsh conditions

  • LTE routers with fallback and monitoring

  • Remote I/O for real-time status

High-level explanation, not deep dives:
Each technology enhances fault visibility, improves uptime, and simplifies maintenance, but only when selected to match environmental, operational, and redundancy requirements.


Space and Weight Considerations: Planning for Human Beings, Not Just Hardware

Remote sites often exist in locations where space is severely limited or access is constrained.

Real Experience: Hilltop Site in Winter

One winter, access to a hilltop site was restricted to foot access only because vehicles couldn’t make the final climb. Batteries needed replacement, but the only way to get them to the cabinet was to physically carry them the last stage through snow and ice.

This led to:

  • increased manual handling risk

  • slower service time

  • two-person lift requirements

  • compromised safety conditions

The long-term solution was to move to a lighter battery technology, reducing the strain of future maintenance.

Design Lessons

Space and weight considerations must be part of:

  • cabinet layout

  • battery selection

  • mounting decisions

  • service access

  • maintenance planning

Remote site design must consider not just how equipment is installed, but how it will be serviced years later.


Access to Site: The Overlooked Design Variable

Access is a critical factor often ignored during system design.

Access challenges include:

  • steep or unpaved tracks

  • restricted access hours

  • security or clearance requirements

  • weather limitations

  • confined spaces

  • roof hatches or ladders

  • mobility-impaired sites

Even a “simple” urban site can effectively become remote during peak traffic or due to building access restrictions.

If technicians can’t safely reach the equipment in all conditions, reliability is compromised no matter how good the technology is.


Reliability and Redundancy: What Remote Sites Truly Need

Redundancy is essential for protecting remote infrastructure. Zyntec Energy focuses on a practical, tiered approach:

N Redundancy

Basic redundancy built into equipment design.

N+1 Redundancy

One extra layer that allows the system to continue operating even with one component failure.
Common examples:

  • dual chargers

  • dual battery strings

  • dual communications paths

Dual Redundancy

Higher uptime capability, often used for critical communications, data links, or industrial control systems.

Real-World Scenarios

  • Rebooting capability preventing a truck roll:
    If a router, controller, or charger locks up, remote reboot capability can avoid hours of travel and return the site to full operation immediately.

  • Failure caused by lack of redundancy:
    A single charger or battery failure can take a site offline. Dual redundancy or N+1 would have prevented the outage entirely.

  • Environmental damage causing premature failure:
    Overheated batteries, corroded terminals, or dust-clogged equipment all reduce system lifespan, but redundancy prevents total site shutdown while repairs are made.

  • Remote monitoring enabling rapid fault isolation:
    Detailed SNMP or Modbus data can pinpoint the fault before a technician is dispatched, cutting service time dramatically.


Rebooting and Remote Control: Small Feature, Huge Value

Remote rebooting isn’t glamorous, but it’s one of the highest-value features in a remote site design.

A single controlled reboot can:

  • restore communications

  • clear router faults

  • reboot SCADA or telemetry

  • reset chargers or controllers

  • return the site to full operation instantly

Every avoided truck roll saves:

  • hours of travel

  • callout cost

  • risk

  • site downtime

Remote control is no longer optional in modern remote site designs.


Time to Get to Site: The Hidden Design Driver

Remote doesn’t mean geographically distant. A site “in town” may be effectively remote during:

  • peak-hour traffic

  • after-hours callouts

  • wet or icy conditions

  • access restrictions

  • contractor availability issues

This means design teams must always consider:

  • realistic travel times

  • practical service windows

  • reliability needs

  • redundancy expectations

This is one of the core design principles at Zyntec Energy, systems must be engineered for the world technicians actually work in, not the ideal one shown in planning documents.


Conclusion / Final Thoughts

Remote site system design is fundamentally about resilience, visibility, and practical serviceability. The best hardware in the world fails if it can’t be serviced safely, monitored effectively, or supported with sufficient backup time to bridge delays.

By focusing on environmental conditions, communication reliability, deep monitoring capability, realistic backup sizing, appropriate technology selection, redundancy architecture, and genuine access considerations, organisations can dramatically improve site uptime and reduce operational cost.

The real-world examples, whether it was a city comms site with inadequate backup time, a mountain LMR site with limited monitoring, or a winter hilltop site with heavy batteries, highlight the importance of designing for reality. These lessons directly shape the engineering philosophy at Zyntec Energy, where system reliability, field practicality, and long-term maintainability guide every remote site installation and upgrade.


If you're designing or upgrading a remote site power or monitoring system, contact Zyntec Energy today. We can help you design and implement a resilient, maintainable, and high-visibility system that delivers long-term reliability even when the site is hard to reach and time isn’t on your side.

Zyntec Logo