Welcome

Welcome to the Josty Mini Blog where we will provide summary posts from our main blog on www.josty.nz, all of the information with a fraction of the reading.

If this makes you think or inspires you then that's great then follow this blog. If you want to reach out, then head over to our contact page via the links on the right.
Showing posts with label dc system. Show all posts
Showing posts with label dc system. Show all posts

Thursday, November 6, 2025

Lead-Acid Batteries for Standby & High-Temperature Applications

 Switchboard room with two battery banks on racks.

Long-Life Lead-Acid Batteries for Standby and Hot Environments

Introduction

Lithium may dominate today’s energy conversations, but in the real world of standby applications, outdoor installations, and high-temperature environments, the smartest battery choice isn’t always the trendiest one. In fact, lead-acid technology, particularly long-life VRLA, high-temperature VRLA, and premium models such as the QUASAR range, continues to deliver outstanding performance across New Zealand, Australia, and other harsh Southern Hemisphere climates.

The belief that “lead-acid is dead” is one of the most persistent myths in the power industry. But for facility managers, electrical engineers, procurement teams, and operations leaders, the reality is far more nuanced. When properly engineered and correctly specified, lead-acid batteries can outperform lithium in several critical areas: design life, thermal tolerance, predictability, total cost of ownership, and reliability under stress.

Modern high-end VRLA technology has advanced significantly in the last decade, offering features such as:

  • 15–20-year design life

  • Exceptional cycle performance (>2000 cycles @ 50% DOD)

  • Ultra-fast recharge rates

  • PSOC (Partial State of Charge) capability

  • Shelf life up to two years without recharge

  • Operating temperatures from –40°C to +65°C

These are not simply incremental improvements, they are game changers for industries operating in wild temperature conditions, such as Central Otago, which experiences some of the coldest winters and hottest summers in New Zealand, or the extreme heat of inland Australia. In these regions, “thermal resilience” is not a desirable feature, it is a fundamental requirement for battery health, safety, and long-term cost efficiency.

This blog unpacks the case for long-life and high-temperature lead-acid batteries, explores common myths, and highlights when VRLA remains the right choice for your environment and application.


Why Lead-Acid Still Matters in Modern Power Systems

1. Proven Longevity and High Design Life

In many standby installations, design life matters more than energy density. A premium VRLA battery with a 15–20-year design life provides predictable, stable, low-maintenance performance. High-end products, such as the QUASAR extended-life VRLA range, are specifically engineered for mission-critical infrastructure requiring reliability above all else.

This is particularly important for:

  • Data centres

  • Utilities

  • Telecommunications sites

  • Transport and signalling systems

  • Remote industrial assets

  • Outdoor cabinets and field enclosures

These environments value predictability over innovation for innovation’s sake.

2. Temperature Performance: The Southern Hemisphere Advantage

Lithium batteries perform well, but they are sensitive to heat. Many require active cooling or derating above certain thresholds. By contrast, high-temperature VRLA batteries operate comfortably from:

–40°C to +65°C

This is crucial for countries such as New Zealand and Australia, where outdoor electrical assets often sit inside metal cabinets under direct sun, exposed to:

  • Sub-zero frosts

  • Snow and ice

  • Extreme midday heat

  • Rapid temperature swings

Central Otago is a perfect example, home to some of the coldest winters, hottest summers, and the widest temperature swings in the entire Southern Hemisphere.

In these conditions:

  • Lithium may require HVAC support

  • VRLA often does not

  • HVAC reductions = lower OPEX

  • Lower OPEX = stronger lifetime ROI

When thermal stress is the primary risk, VRLA is often the most fit-for-purpose solution.

3. Cycle Life and PSOC: The Hidden Strengths of VRLA

Modern long-life VRLA technology is not the same as the old legacy units of the 1990s and 2000s. Today’s premium VRLA batteries routinely deliver:

  • >2000 cycles at 50% depth of discharge

  • Fast recharge acceptance

  • PSOC compatibility

This makes them suitable not only for standby applications, but for hybrid cyclic/standby roles where batteries see intermittent partial discharge events. This is especially common in:

  • Solar-assisted telecom sites

  • Remote monitoring stations

  • Transport nodes relying on intermittent grid power

  • Applications with frequent micro-outages

PSOC capability was once viewed as a lithium-only feature. Not anymore.

4. Shelf Life, Stability & Predictability

A two-year shelf life gives long-life VRLA a decisive operational advantage for:

  • Procurement teams

  • Field deployment schedules

  • Long-lead infrastructure projects

  • Remote installation logistics

Lead-acid chemistry also offers unmatched predictability. For risk-averse industries such as utilities and transportation, this is invaluable.

5. Total Cost of Ownership (TCO): The Often Overlooked Factor

Lithium batteries may offer compactness and high energy density, but density does not equal value. In many standby or fixed applications, the ROI calculation heavily favours VRLA due to:

  • No cooling or HVAC dependencies

  • Lower initial capital cost

  • Lower replacement cost

  • Fewer warranty complications

  • Predictable failure modes

  • Simpler installation

  • No specialist BMS requirements

When your system cycles infrequently, cycle superiority does not translate to practical benefit. TCO must always be measured in context.


Myth-Busting: What Engineers Should Know

Myth 1: Lead-acid is outdated.

Fact: Modern long-life VRLA continues to evolve and is engineered specifically for today’s infrastructure needs.

Myth 2: Lithium always lasts longer.

Fact: In high-heat environments, lithium lifespan can drop dramatically without active cooling. High-temperature VRLA may last longer.

Myth 3: Lead-acid can’t handle PSOC or cyclic work.

Fact: High-end VRLA now supports PSOC and multi-thousand-cycle performance.

Myth 4: VRLA isn’t suitable for outdoor installations.

Fact: High-temperature VRLA thrives in harsh outdoor conditions when lithium must be derated or cooled.

Myth 5: Lithium is always safer.

Fact: Lithium is extremely safe when engineered well, but lead-acid remains chemically stable, predictable, and tolerant to abuse.


When Lead-Acid Is the Right Technology (and When It Isn’t)

Ideal Applications for Long-Life VRLA

  • Standby power systems

  • Telecom and communications

  • Transport signalling

  • Utility control and SCADA

  • Outdoor enclosures exposed to large temperature swings

  • Remote infrastructure

  • High-temperature regions

  • Projects where ROI and predictability matter most

When Lithium May Be Better

  • Applications requiring very high energy density

  • Weight-sensitive installations

  • Continuous cycling or deep cycling

  • Portable and mobile applications

The real lesson: Technology must fit the environment and the application not the trend.


Conclusion / Final Thoughts

Lead-acid technology is not competing with lithium, it sits alongside it as a proven, mature, and highly reliable energy storage solution. When you consider today’s advanced long-life VRLA, high-temperature VRLA, and premium ranges such as QUASAR, lead-acid remains one of the most cost-effective and dependable options for many real-world standby environments.

Across the Southern Hemisphere, from the wild temperature swings of Central Otago to the extreme heat of remote Australian installations, a well-engineered VRLA system still offers:

  • Superior thermal resilience

  • Predictable long-term performance

  • Lower HVAC requirements

  • Lower total cost of ownership

  • Proven reliability under harsh conditions

For facility managers, engineers, operations leaders, and procurement teams, the message is clear: lead-acid isn’t dead, it’s simply misunderstood. When the application demands stability, safety, long life, and thermal robustness, lead-acid is still the right technology.

If you’re reviewing your existing standby infrastructure, planning upgrades, or wanting a clear engineering-based assessment of which chemistry is right for your environment, I’d be happy to help.

Message me to request our Standby Battery Lifespan Optimiser, a quick, engineering-led assessment to improve reliability, reduce OPEX, and select the right battery chemistry for your environment and application.

Zyntec Energy Logo


Josty logo


Monday, November 3, 2025

Modbus Visibility for Backup Power and Customised DC Systems

 Control/switch room cutaway showing batteries and SCADA

Improving Backup Power Reliability with Modbus Monitoring


Introduction

In the world of backup power, power conversion solutions, and customised DC systems, one thing remains constant: visibility determines reliability. Engineers and technicians know that even the best-designed systems can fail if they aren’t monitored correctly. That’s why Modbus integration has evolved from a “nice-to-have” feature into a core requirement across modern standby power installations.

Whether you're working with rectifier systems, UPS modules, DC chargers, VRLA strings, lithium packs, or hybrid configurations, there’s a simple rule: if you can’t see what’s happening inside the system, you can’t control it and you certainly can’t protect it.

Modbus gives engineering teams a granular, real-time window into the behaviour of their backup power systems. And in many modern systems, including those designed and supplied by Zyntec Energy, Modbus visibility is built in as either a standard feature or a supported option.

For electrical engineers and technicians, this level of transparency isn’t just helpful, it can be the difference between uninterrupted uptime and a catastrophic failure.


What Modbus Actually Delivers in Backup Power Systems

A lot of people talk about Modbus, but few explain what it really gives you. Below is a high-level look through an engineer’s lens, what you can expect and why each parameter matters.

1. State of Charge (SOC): Meaningful Capacity Awareness

SOC reporting via Modbus allows teams to track the real capacity available during an outage. Rather than relying on assumptions or outdated test data, engineers get live information on:

  • remaining battery charge

  • discharge rate under load

  • estimated runtime

It also supports trending over time, helping identify early degradation in VRLA or lithium banks.

2. Float Voltage: Confidence Your Batteries Aren’t Being Over or Undercharged

Float voltage issues are far more common than people realise. Even a slight drift above recommended voltage can push VRLA batteries into premature aging while undercharging slowly erodes capacity.

With Modbus visibility, float voltage becomes a monitored item rather than a “set it once and hope” parameter.

3. Alarms: From Passive to Proactive Maintenance

Modbus transforms basic system alarms into actionable intelligence. Instead of relying on local LEDs or a once-a-year inspection, engineers see issues instantly, including:

  • high temperature

  • low voltage

  • cell imbalance

  • fan faults

  • communication errors

  • over-current events

These alarms become part of a real monitoring strategy, not an afterthought.

4. Charger and Rectifier Status: Essential for System Redundancy

In DC power systems with N+1 rectifier redundancy, Modbus monitoring is critical. Engineers can instantly see:

  • charger mode

  • rectifier availability

  • rectifier load sharing

  • rectifier failures

  • DC bus status

If one rectifier fails, the system might still run but without monitoring, no one will know until the next failure takes the site offline.

5. Temperature: The Silent System Killer

Modbus provides real-time temperature feedback inside battery banks, cabinets, and rectifier bays. Temperature rise is often the first indicator of:

  • inadequate ventilation

  • blocked airflow

  • fan failures

  • excessive load

  • enclosure heat soak

Catching temperature trends early prevents more expensive failures later.


How Modbus Monitoring Prevents Real-World Failures

Even the most robust power conversion solutions can fail without monitoring. Here are three real-world examples, scenarios every engineer should consider.

Scenario 1: Overvoltage Charging Leads to Thermal Runaway

In one installation, a charger’s voltage reference drifted over time. Without Modbus monitoring, there were no alarms, logs, or upstream alerts. The float voltage gradually increased until the batteries were being unintentionally overcharged.

The result?

  • Plates dried out

  • Temperature spiked

  • Cells began to swell

  • A thermal runaway event followed

This entire incident could have been avoided with basic Modbus visibility on float voltage, charger status, and temperature.

Scenario 2: Blown Battery Fuse Goes Undetected → No Backup When Needed

A DC power system experienced a blown battery fuse during maintenance. Without Modbus monitoring on battery strings, the system continued operating on rectifier power alone.

The next mains failure occurred during a storm.

With the battery bank isolated, the site shut down instantly.

Had Modbus been used to monitor battery fuse status or DC bus behaviour, engineers would have seen the fault immediately and restored the backup path before the outage.

Scenario 3: Cabinet Overheating Causes Power Derating and Premature Aging

In another site, a cooling fan failed inside an outdoor cabinet. Without monitoring, temperatures climbed slowly for weeks.

The consequences included:

  • rectifier derating

  • reduced DC output

  • elevated internal resistance in the batteries

  • premature failure of multiple components

A simple temperature alarm via Modbus would have prevented all of this.


Why Modbus Matters for Engineers and Technicians

Modbus isn’t just a communication protocol; it’s a reliability tool.

For engineering teams, Modbus provides:

  • Faster diagnostics

  • Predictive maintenance insights

  • Accurate runtime expectations

  • Better fault isolation

  • Reduced site visits

  • Extended asset life

And as systems become more interconnected, especially across IP networks and remote sites, Modbus acts as the bridge between standalone hardware and intelligent infrastructure.


Conclusion / Final Thoughts

Backup power systems fail for two reasons: lack of maintenance or lack of visibility. Modbus directly addresses the visibility problem by providing engineers and technicians with real-time insights into the health, status, and behaviour of their power conversion solutions and customised DC systems.

Whether you’re dealing with battery banks, rectifier systems, UPS modules, or outdoor enclosures, having Modbus in play transforms your approach from reactive to proactive. Modern systems, including those designed and supplied by Zyntec Energynow embrace Modbus as a standard part of operational reliability.

When properly utilised, Modbus doesn’t just report data. It prevents failures, protects equipment, and ensures that when mains power disappears, your backup systems are ready to perform.


If you want to improve how your power systems are monitored, or you’re planning upgrades to your power conversion solutions, backup power infrastructure, or customised DC systems, contact me to discuss your monitored power conversion and backup requirements.

Zyntec logo

Josty logo




Friday, October 10, 2025

Redundancy in Backup Power Systems: Designing for Reliability

Backup power redundancy: operational vs. catastrophic failure.

Ensuring Power System Reliability Through Redundant Design


Introduction

In critical infrastructure, reliability isn’t optional it’s essential.
Whether it’s a hospital, data centre, renewable microgrid, or industrial facility, backup power systems form the foundation of operational resilience. Yet, many systems that appear redundant on paper fail under real-world conditions.

I’ve seen redundancy misunderstood as simply “having two of everything.” True redundancy, however, is a deliberate design philosophy that anticipates faults, isolates risks, and maintains continuity when the unexpected happens.

This article explores the importance of redundancy in backup power systems, the common pitfalls that lead to failure, and how sound electrical design ensures the power system reliability critical infrastructure demands.


Redundancy: More Than Duplicate Equipment

Redundancy is often viewed as an expense rather than an investment. Many organisations believe that as long as they have a generator and a battery bank, they’re protected. But effective redundancy isn’t about duplication, it’s about eliminating single points of failure across the system.

A true redundant configuration goes beyond having spare capacity. It considers isolation, control, switching, and monitoring. In other words, every element that ensures the system can continue operating even when one component fails.

Common design approaches include N+1 and N+N configurations.

  • N+1 means the system has one additional unit beyond what is required for operation.

  • N+N means there are two fully independent systems capable of handling the entire load.

While these look robust in theory, their effectiveness depends on the implementation not just the schematic.


Real-World Failures: Lessons from the Field

Redundancy can fail catastrophically when design assumptions meet reality. Over the years, I’ve encountered several instructive examples that demonstrate this point clearly:

  1. Fire in a Shared Cabinet
    An N+N system was installed in the same cabinet for convenience. When one side caught fire, it took out the other thereby eliminating both redundancy and load support.

  2. Dual Chargers, Single Battery Bank
    Two chargers feeding one battery bank looked redundant on paper. When the mains failed, a fault in the battery bank disabled supply, resulting in a total loss of the load.

  3. Undersized Charger Under Peak Load
    A system failed to provide the required backup time during a mains outage. The batteries had been supporting the peak load during normal operation because the charger was too small. By the time the outage occurred, there was nothing left to give.

  4. Lightning Strike on a Shared Cable
    Even a fully redundant system with dual loads, chargers, batteries, and generators, failed when a lightning strike hit the single cable feeding the load. Every layer of redundancy was rendered useless by that one shared path.

  5. Unmonitored System Alarms
    In several cases, redundant systems failed simply because their alarms, breakers, or monitoring devices weren’t checked. Redundancy without vigilance is merely false security.

Each of these failures had one thing in common: a single overlooked weakness that compromised the entire system.


Designing for True Power System Reliability

To achieve genuine power system reliability, redundancy must be integrated holistically from design through to operation. Key principles include:

  • Isolation and Segregation
    Keep redundant systems physically and electrically separate. Shared cabinets, cables, or switchboards can become single points of failure.

  • Independent Control Paths
    Ensure that control systems and automatic transfer switches (ATS) are independently powered and fail-safe.

  • Appropriate Sizing
    Components such as chargers and inverters must handle full load conditions with headroom for degradation and future expansion.

  • Monitoring and Maintenance
    Redundant systems only protect if they’re healthy. Continuous monitoring, alarm management, and preventive maintenance are essential.

  • Periodic Testing
    Redundancy that isn’t tested may not work when required. Regular load testing verifies that each system responds correctly under real conditions.

When these design philosophies are followed, redundancy becomes more than hardware it becomes a reliability strategy.


Challenging Misconceptions

Many decision-makers still view redundancy as an unnecessary cost. Yet the real question is: What’s the cost of failure?

Downtime in a hospital, data centre, or industrial plant can cost far more than the additional investment in redundancy.
Similarly, the belief that “batteries alone are enough” overlooks the complexities of system load, charging capacity, and environmental factors.

Reliability engineering reminds us that every component can and will fail over time. The role of redundancy is to ensure that when it does, operations continue seamlessly.


Conclusion / Final Thoughts

Redundancy in backup power systems isn’t a luxury; it’s the foundation of energy resilience and operational integrity.
Systems designed with real-world reliability in mind will not only protect critical infrastructure but also safeguard the reputation and continuity of the organisations that depend on them.

Every design choice, from cable routing to control architecture, affects resilience. By understanding the vulnerabilities hidden within “redundant” designs, engineers and decision-makers can prevent failures before they occur.


If you’d like to review your current backup power design or discuss how to improve system resilience, let’s start a conversation.

Together we can identify potential failure points, assess redundancy strategies, and ensure your system performs when it matters most.

Contact me to discuss how to make your backup power system truly redundant, reliable, and resilient.

Zyntec Energy Logo 
Josty Logo



Quality Solutions vs Budget Solutions in Engineering

Arcing electrical panel with "Budget Solutions" title

How CAPEX Reduces OPEX and Improves Reliability

Introduction

In engineering, the balance between capital expenditure (CAPEX) and operational expenditure (OPEX) often defines the success or failure of a project. The temptation to reduce upfront costs can be strong, especially when budgets are tight, but choosing budget solutions over quality solutions often proves costly in the long run.

While low-cost equipment may meet immediate project requirements, the long-term consequences, higher maintenance, shorter component lifespan, and unplanned downtime, quickly offset any initial savings. In contrast, investing in quality from the start not only enhances reliability but significantly lowers total cost of ownership. This article explores why spending more on CAPEX can dramatically reduce OPEX, and why quality solutions are the foundation of operational excellence.


The False Economy of Budget Solutions

Procurement decisions based solely on price create what engineers often call a false economy. The initial purchase might look efficient, but over the system’s life, hidden costs quickly emerge. Cheaper components tend to have shorter design lives, weaker tolerances, and higher failure rates, leading to more frequent replacements and higher maintenance overheads.

For example, in industrial power systems, low-cost UPS units are often marketed as “fit-for-purpose.” Yet, in many real-world applications, they barely last beyond the warranty period, exposing operators to the very outages the systems were meant to prevent. Similarly, budget battery systems with reduced cycle life might appear to deliver similar capacity on paper, but in practice, they may require replacement at a three-to-one ratio compared with higher-quality alternatives.

The result? Increased downtime, unplanned site visits, and mounting OPEX, all while eroding confidence in the system’s reliability.


The Long-Term Advantage of Quality Solutions

Quality solutions are engineered not just to work, but to endure. They are designed, tested, and built to deliver consistent performance under real-world conditions. When viewed through the lens of lifecycle cost rather than initial outlay, quality equipment quickly proves its value.

  • Reduced maintenance requirements: Higher-quality components require fewer interventions, lowering labour and logistics costs.

  • Improved reliability: Consistent performance prevents the cascading failures that can occur when one weak link compromises the system.

  • Extended operational lifespan: Quality systems are designed for longevity, often operating far beyond their amortisation period.

  • Predictable performance: Stability in operation leads to predictable budgets and fewer emergency callouts.

In short, quality CAPEX spending reduces OPEX through reliability, efficiency, and durability.


The Cost of Downtime

Downtime is one of the most expensive consequences of budget decision-making. In critical infrastructure, industrial production, or power systems, even brief interruptions can result in significant financial losses and operational disruption.

Consider the total impact:

  • Direct costs – lost production, replacement parts, and emergency repairs.

  • Indirect costs – delayed projects, overtime pay, and reputational damage.

  • Opportunity costs – lost client confidence or future contracts due to perceived unreliability.

When systems fail prematurely, the cumulative cost can exceed the original CAPEX many times over. By contrast, investing slightly more upfront on components, batteries, control systems, or switching gear provides a form of operational insurance minimising risk, maximising uptime, and protecting the business’s long-term performance.


Engineering and Financial Alignment

Quality-focused procurement isn’t just an engineering decision, it’s a strategic financial one. A well-planned CAPEX investment improves cash flow stability, as OPEX becomes more predictable and less reactive. It also enables better resource allocation, allowing technical teams to focus on performance optimisation instead of constant repairs.

In project planning, adopting a total cost of ownership (TCO) approach provides a more accurate measure of true value. TCO accounts for:

  • Equipment life expectancy

  • Maintenance frequency and cost

  • Efficiency and energy performance

  • Downtime and production loss

  • Disposal and replacement cycles

When viewed this way, the cheapest option rarely offers the best outcome. The real savings come from long-term reliability, operational stability, and consistent output.


From Procurement to Performance

Decision-makers across engineering, industrial, and energy sectors share a common goal: achieving dependable, efficient systems that deliver performance year after year. The key lies not in squeezing the initial budget, but in ensuring that every dollar spent on CAPEX directly supports reduced OPEX, improved system reliability, and lower lifecycle risk.

Procurement strategies must evolve beyond price comparison alone. They should assess supplier track records, quality standards, warranty conditions, and service support. Partnering with solution providers who prioritise quality and reliability ensures that investments translate into operational strength—not future liabilities.


Conclusion / Final Thoughts

In the race to control project costs, it’s easy to view CAPEX as a burden and OPEX as an afterthought. In reality, the two are deeply connected. Spending wisely upfront on equipment designed for reliability and longevity protects operational performance and financial stability.

Quality solutions outperform budget alternatives not just in efficiency, but in every metric that matters including uptime, safety, and total cost. The lesson is simple what costs more today can save exponentially tomorrow.

When quality drives procurement decisions, engineering systems deliver the performance they were designed for, ensuring operational continuity and sustainable success.


Contact me to discuss further about how a focus on quality solutions can enhance reliability, reduce OPEX, and strengthen long-term system performance.

Zyntec Logo 
Josty Logo



Wednesday, August 13, 2025

What Is the Best Type of Backup Solution for Your Critical Load?

A brightly lit server rack in a dark, blacked-out city.

When it comes to critical load backup solutions, the answer isn’t about choosing a trendy product or the most aggressively marketed system it’s about finding the one that will perform flawlessly when you need it most.

A true backup system must supply your load for the required backup time, even while everything else is failing around it. This means it must be sized and designed for your specific application, be robust enough to withstand environmental and operational stress, and have redundancy built in so there are no single points of failure.

Why “One-Size-Fits-All” Doesn’t Work

Recently, I saw a post promoting one type of backup solution over another. The problem? The arguments were technically flawed and clearly driven by a sales agenda rather than actual performance data. In backup power, such oversimplification can lead to costly mistakes and in worst-case scenarios, critical operational downtime.

Every site, application, and environment has its own demands:

  • Load characteristics (voltage, current, inrush requirements)

  • Backup duration (seconds, minutes, or hours)

  • Environmental conditions (temperature, humidity, vibration)

  • Operational priorities (safety systems, communications, process control)

Why Battery-Backed DC Systems Deserve Attention

For many applications, battery-backed DC systems offer a reliable and predictable way to protect critical loads. When properly designed:

  • They eliminate conversion losses seen in AC-only backup setups.

  • They respond instantly, there’s no switchover lag.

  • They can be configured for n+1 redundancy to avoid single points of failure.

  • They integrate well with renewable energy inputs and advanced monitoring systems.

However, the key word here is “properly designed.” An undersized battery bank or poorly specified charger can fail under stress, leaving your systems unprotected. That’s why it’s vital to work with an expert who understands both the theory and the field realities.

Redundancy Is Non-Negotiable

Even the best-built system can fail. That’s why redundancy should be a non-negotiable part of your backup design.

  • Dual strings of batteries prevent total outage if one fails.

  • Redundant chargers ensure batteries stay at optimal charge.

  • Multiple feeds or paths avoid a single fault taking the system down.

Think of redundancy as insurance for your insurance.

The Cost of Getting It Wrong

Downtime from an inadequate backup system doesn’t just mean a temporary inconvenience—it can result in:

  • Production losses worth thousands (or millions) of dollars.

  • Safety risks to personnel.

  • Compliance breaches that bring fines and reputational damage.

When weighed against these risks, investing in the right system from the start is not just a technical decision, it’s a strategic business decision.

Expert Guidance Is Critical

The best backup system is not necessarily the most expensive or the most heavily advertised it’s the one engineered for your exact needs. Avoid decisions based on:

  • Outdated technical assumptions.

  • Sales pitches without site-specific data.

  • “It worked for them, so it will work for us” thinking.

Instead, bring in a specialist who can analyse your:

  • Load profile.

  • Redundancy requirements.

  • Budget constraints.

  • Compliance obligations.

The Josty Approach

At Josty, we believe in engineering solutions that empower growth and secure success. Our backup designs are tailored, tested, and backed by decades of hands-on industry experience. We understand the cost of failure and we make sure your systems are ready when it matters most.

Bottom line: The best type of backup solution is one that isn’t going to let you down when you need it most. It needs to be sized and designed for your application, be robust, and have redundancy to eliminate single points of failure. Don’t get caught out by clever marketing talk to an expert and make a decision based on facts, performance, and reliability.

Visit our website via the links in our bio to learn more about how we can help protect your business-critical systems.

Josty Logo


Wednesday, August 6, 2025

Is your battery bank truly capable of providing the backup you need?

A close-up of a rack-mounted DC battery system with data displays.

 It’s a simple question but one too many electrical professionals leave unanswered until it’s too late.

When did you last audit your DC battery system?

The battery bank is the last line of defence in any critical electrical system—whether it’s a substation, industrial control system, telecom site, hospital, or process plant. And yet, many are designed on assumptions rather than solid, real-world data. The result? Unreliable backup, accelerated degradation, and systems that may not hold up when you need them most.

Let’s ask some hard questions

  • Was the battery sized correctly?
    Was a detailed load profile used, accounting for the actual connected loads and load drop-off logic? Or was it a best guess, recycled from a similar project?
    If your system wasn't built using real-time measured data or an accurate forecast of load demands, there’s a good chance it’s either undersized or overengineered in the wrong areas.

  • Were the right design contingencies applied?
    You can’t just look at nominal capacity. Temperature corrections, expected aging over 10–15 years, float charging behaviour, and maximum expected ambient conditions must all be considered.
    Many failures occur not due to battery faults, but due to poor thermal planning or inadequate aging margin.

  • Is the battery type fit for purpose?
    It’s not just about lead-acid vs. lithium. It’s about:

    • Maintenance access

    • Ventilation and gassing considerations

    • Frequency of cycling

    • Environment (indoor vs outdoor, hot vs cold, clean vs corrosive)

    • Expected lifespan and serviceability

Too often, battery decisions are based on budget constraints or rough sizing estimates. But the cheapest option upfront often becomes the most expensive mistake down the line especially when critical operations are disrupted due to battery failure or backup insufficiency.

The reality of DC system neglect

At Josty, we regularly conduct audits across a wide range of industries from utilities to infrastructure and industrial applications. One common pattern? The DC system is often overlooked once commissioned. It’s assumed to be “set and forget.” But that’s a dangerous assumption.

We’ve seen sites where:

  • Battery banks were still operating years beyond their rated life

  • Load profiles had changed dramatically since the original installation

  • Autonomy requirements increased but weren’t reassessed

  • Ventilation and room conditions had degraded over time

  • There was no clear maintenance schedule or test data history

And when problems strike during an outage or load shed it’s always the battery that gets blamed. But the problem almost always starts earlier… in the design, selection, and maintenance of the system.

How Josty can help

We specialise in helping businesses audit and optimise their DC systems and battery backup. Our process includes:

  • Reviewing the original design, spec, and as-built installation

  • Verifying site conditions, environment, and current load behaviour

  • Testing and inspecting the battery health and performance

  • Identifying risks, gaps, and opportunities for lifecycle improvement

  • Delivering clear, actionable recommendations for compliance and performance

You’ll receive a detailed report tailored to your site’s conditions and business needs whether that’s ensuring redundancy, extending service life, or planning for future load expansions.

Visit Backup Power Solutions for Business | Josty NZ to learn more about our engineering services and battery audits.

Ready to take the guesswork out of your critical backup systems?

👉 Book an audit of your battery bank and DC system today via Contact Josty | Business Consulting NZ or send us a message directly.

Josty logo